Oxidation/Reduction Limits for $\mathbf{H}_{\mathbf{2}} \mathbf{O}$

Consider the Oxidation of $\mathrm{H}_{2} \mathrm{O}$ to yield $\mathrm{O}_{2}(\mathrm{~g})$, the half reaction can be written as;

$$
2 \mathrm{H}_{2} \mathrm{O}===\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 e^{-} \quad \mathrm{E}^{0}=-1.23 \mathrm{~V} \text { (from tables) }
$$

Re-writing this as a reduction (by convention) and dividing by 4 (for convenience) yields;

$$
1 / 4 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}^{+}+e^{-}====1 / 2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{0}=1.23 \mathrm{~V}
$$

(note the sign change in E^{0}, but the magnitude remains unchanged)
Writing an equilibrium expression for the half reaction yields;

$$
\mathrm{K}_{\mathrm{eq}}=\frac{1}{\mathrm{P}_{\mathrm{O} 2}^{1 / 4}\left\{\mathrm{H}^{+}\right\}\left\{\mathrm{e}^{-}\right\}}=\mathrm{P}_{\mathrm{O} 2}^{-1 / 4}\left\{\mathrm{H}^{+}\right\}^{-1}\left\{\mathrm{e}^{-}\right\}^{-1}
$$

Isolating $\left\{e^{-}\right\}^{-1}$ yields; $\left\{e^{-}\right\}^{-1}=\mathrm{K}_{\mathrm{eq}} \mathrm{P}_{\mathrm{O} 2}{ }^{1 / 4}\left\{\mathrm{H}^{+}\right\}$
and taking \log of both sides yields; $\log \left\{e^{-}\right\}^{-1}=\log \mathrm{K}_{\mathrm{eq}}+\log \mathrm{P}_{\mathrm{O} 2}{ }^{1 / 4}+\log \left\{\mathrm{H}^{+}\right\}$
Defining $\mathrm{p} e=-\log \left\{e^{-}\right\}$and $\mathrm{pH}=-\log \left\{\mathrm{H}^{+}\right\}$yields;

$$
\mathrm{p} e=\log \mathrm{K}_{\mathrm{eq}}+\log \mathrm{P}_{\mathrm{O} 2}^{-1 / 4}-\mathrm{pH}
$$

At the boundary of chemical oxidation of $\mathrm{H}_{2} \mathrm{O}$, the $\mathrm{P}_{\mathrm{O} 2}=1$ atm and so;

$$
\begin{aligned}
& \mathrm{pe}=\log \mathrm{K}_{\mathrm{eq}}-\mathrm{pH} \\
& \\
& \quad \text { Since, } K_{e q}=10^{-\frac{\Delta G^{o}}{2.3 R T}}, \log K_{e q}=\frac{-\Delta G^{o}}{2.3 R T} \text { and } \Delta \mathrm{G}^{0}=-n \mathrm{FE}^{0} \text {, then } \\
& \quad \log K_{e q}=\frac{n F E^{o}}{2.3 R T} \text { and } \\
& p e=\frac{n F E^{o}}{2.3 R T}-p H
\end{aligned}
$$

In the present case, where $\mathrm{n}=1$ and $\mathrm{E}^{0}=1.23 \mathrm{~V}$, the dependence of pe on pH is given by;

$$
\mathbf{p} \boldsymbol{e}=\mathbf{2 0 . 8} \mathbf{- \mathbf { p H }} \text { for the boundary for the oxidation of } \mathrm{H}_{2} \mathrm{O} \text { to } \mathrm{O}_{2}
$$

where $\mathrm{F}=96,485 \mathrm{C} / \mathrm{mol}, \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}, \mathrm{T}=298 \mathrm{~K}$ and $1 \mathrm{CV}=\mathrm{J} / \mathrm{mol}$.
When H^{+}is at standard state (i.e., $1 \mathrm{M}, \mathrm{pH}=0$) at $25^{\circ} \mathrm{C}$, then

$$
p e=p e^{o}=\frac{n F E^{o}}{2.3 R T}=20.8\left(\text { for the oxidation of } \mathrm{H}_{2} \mathrm{O} \text { to } \mathrm{O}_{2}\right)
$$

In general; $p e^{o}=\log K_{e q}=\frac{-\Delta G^{0}}{2.3 R T}=\frac{E^{o}}{0.0591}$, and $\mathrm{p} e=\frac{\mathrm{E}}{0.0591}$ for any one electron process at $25^{\circ} \mathrm{C}$.

Consider the Reduction of $\mathrm{H}_{2} \mathrm{O}$ to yield $\mathrm{H}_{2}(\mathrm{~g})$, the half reaction can be written as;

$$
2 \mathrm{H}_{2} \mathrm{O}+2 e^{-}===\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-} \quad \mathrm{E}^{0}=-0.827 \mathrm{~V} \text { (from tables) }
$$

Re-writing this reduction dividing by 2 (for convenience) yields;

$$
\begin{aligned}
& 1 / 2 \mathrm{H}_{2} \mathrm{O}+e^{-}===1 / 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{OH}^{-} \\
& \text {(note the magnitude of } E^{o} \text { remains unchanged) }
\end{aligned} \quad \mathrm{E}^{0}=-0.827 \mathrm{~V}
$$

Writing an equilibrium expression for the half reaction yields;

$$
\mathrm{K}_{\mathrm{eq}}=\mathrm{P}_{\mathrm{H} 2}{ }^{1 / 2}\left\{\mathrm{OH}^{-}\right\}\left\{e^{-}\right\}^{-1}
$$

Isolating $\left\{e^{-}\right\}^{-1}$ and taking log of both sides yields;

$$
\log \left\{e^{-}\right\}^{-1}=\log \mathrm{K}_{\mathrm{eq}}+\log \mathrm{P}_{\mathrm{H} 2}^{-1 / 2}+\log \left\{\mathrm{OH}^{-}\right\}^{-1}
$$

Defining pe $=-\log \left\{e^{-}\right\}$and $\mathrm{pOH}=-\log \left\{\mathrm{OH}^{-}\right\}$yields;

$$
\mathrm{pe}=\log \mathrm{K}_{\mathrm{eq}}+\log \mathrm{P}_{\mathrm{O} 2}^{-1 / 2}+\mathrm{pOH}
$$

At the boundary of chemical reduction of $\mathrm{H}_{2} \mathrm{O}$, the $\mathrm{P}_{\mathrm{H} 2}=1 \mathrm{~atm}$ and so;

$$
\mathrm{p} e=\log \mathrm{K}_{\mathrm{eq}}+\mathrm{pOH}
$$

Since $\mathrm{pK}_{\mathrm{w}}=\mathrm{pOH}+\mathrm{pH}$, we can substitute $\mathrm{pOH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pH}$ thus;

$$
\mathrm{pe}=\log \mathrm{K}_{\mathrm{eq}}+\mathrm{p} \mathrm{~K}_{\mathrm{w}}-\mathrm{pH}
$$

As before,

$$
\begin{array}{r}
\log K_{e q}=\frac{n F E^{o}}{2.3 R T} \text { and } \\
p e=\frac{n F E^{o}}{2.3 R T}+p K_{w}-p H
\end{array}
$$

In the present case, where $\mathrm{n}=1, \mathrm{E}^{0}=-0.827 \mathrm{~V}$ and $\mathrm{pK}_{\mathrm{w}}=14$, the dependence of pe on pH is given by;
$p e=\frac{(1)(96485)(-0.827)}{2.3(8.314)(298)}+14-p H=-p H$ (note that the units in $n F E^{o} / 2.3 R T$ cancel)

When H^{+}is at standard state (i.e., $1 \mathrm{M}, \mathrm{pH}=0$) at 25°, then $\mathrm{p} e=\mathrm{p} e^{0}=0$ for the reduction of $\mathrm{H}_{2} \mathrm{O}$ to H_{2}.

At other $\left\{\mathrm{H}^{+}\right\}$, the boundary between $\mathrm{H}_{2} \mathrm{O}$ and H_{2} is given by; pe=-pH

