Oxidation/Reduction Limits for H₂O

Consider the *Oxidation* of H_2O to yield $O_2(g)$, the half reaction can be written as;

 $2 H_2 O == O_2(g) + 4 H^+ + 4 e^- E^\circ = -1.23 V (from tables)$

Re-writing this as a reduction (by convention) and dividing by 4 (for convenience) yields;

$$\frac{1}{4}O_2(g) + H^+ + e^- = = \frac{1}{2}H_2O$$
 $E^\circ = 1.23 V$ (note the sign change in E° , but the magnitude remains unchanged)

Writing an equilibrium expression for the half reaction yields;

$$K_{eq} = \frac{1}{P_{O2}^{-1/4} \{H^+\} \{e^-\}} = P_{O2}^{-1/4} \{H^+\}^{-1} \{e^-\}^{-1}$$

Isolating $\{e^-\}^{-1}$ yields; $\{e^-\}^{-1} = K_{eq} P_{O2}^{1/4} \{H^+\}$

and taking log of both sides yields; $\log \{e^{-}\}^{-1} = \log K_{eq} + \log P_{O2}^{-1/4} + \log \{H^{+}\}$

Defining $pe = -\log \{e^{-}\}$ and $pH = -\log \{H^{+}\}$ yields;

 $pe = \log K_{eq} + \log P_{O2}^{-1/4} - pH$

At the boundary of chemical oxidation of H_2O , the $P_{O2} = 1$ atm and so;

$$pe = \log K_{eq} - pH$$

Since, $K_{eq} = 10^{-\frac{\Delta G^{\circ}}{2.3RT}}$, $\log K_{eq} = \frac{-\Delta G^{\circ}}{2.3RT}$ and $\Delta G^{\circ} = -nFE^{\circ}$, then
 $\log K_{eq} = \frac{nFE^{\circ}}{2.3RT}$ and
 $pe = \frac{nFE^{\circ}}{2.3RT} - pH$

In the present case, where n = 1 and $E^{\circ} = 1.23$ V, the dependence of pe on pH is given by;

pe = 20.8 - pH for the boundary for the oxidation of H₂O to O₂ where F = 96,485 C/mol, R = 8.314 J/mol K, T = 298 K and 1 CV = J/mol.

When H^+ is at standard state (i.e., 1 M, pH = 0) at 25°C, then

$$pe = pe^{\circ} = \frac{nFE^{\circ}}{2.3RT} = 20.8$$
 (for the oxidation of H₂O to O₂)

In general; $pe^{\circ} = \log K_{eq} = \frac{-\Delta G^{\circ}}{2.3RT} = \frac{E^{\circ}}{0.0591}$, and $pe = \frac{E}{0.0591}$ for any one electron process at 25°C.

Consider the *Reduction* of H_2O to yield $H_2(g)$, the half reaction can be written as;

 $2 H_2O + 2 e^- == H_2(g) + 2 OH^- E^\circ = -0.827 V$ (from tables)

Re-writing this reduction dividing by 2 (for convenience) yields;

 $1/2 H_2O + e^- == \frac{1}{2} H_2(g) + OH^- E^\circ = -0.827 V$ (note the magnitude of E° remains unchanged)

Writing an equilibrium expression for the half reaction yields;

$$K_{eq} = P_{H2}^{1/2} \{OH^{-}\} \{e^{-}\}^{-1}$$

Isolating $\{e^{-}\}^{-1}$ and taking log of both sides yields;

$$\log \{e^{-}\}^{-1} = \log K_{eq} + \log P_{H2}^{-1/2} + \log \{OH^{-}\}^{-1}$$

Defining $pe = -\log \{e^-\}$ and $pOH = -\log \{OH^-\}$ yields;

 $pe = \log K_{eq} + \log P_{O2}^{-1/2} + pOH$

At the boundary of chemical reduction of H_2O , the $P_{H2} = 1$ atm and so;

 $pe = \log K_{eq} + pOH$

Since $pK_w = pOH + pH$, we can substitute $pOH = pK_w - pH$ thus;

 $pe = \log K_{eq} + pK_w - pH$

As before,

$$\log K_{eq} = \frac{nFE^{\circ}}{2.3RT} \text{ and}$$
$$pe = \frac{nFE^{\circ}}{2.3RT} + pK_{w} - pH$$

In the present case, where n = 1, $E^{o} = -0.827$ V and $pK_{w} = 14$, the dependence of pe on pH is given by;

 $pe = \frac{(1)(96485)(-0.827)}{2.3(8.314)(298)} + 14 - pH = -pH \text{ (note that the units in nFE}^{\circ}/2.3RT \text{ cancel)}$

When H⁺ is at standard state (i.e., 1 M, pH = 0) at 25°, then $pe = pe^{\circ} = 0$ for the reduction of H₂O to H₂.

At other $\{H^+\}$, the boundary between H_2O and H_2 is given by; pe = -pH